Pengetahuan Dasar dalam Belajar Algoritma

Sunday, May 3rd, 2015 - Belajar

Pengetahuan Dasar dalam Belajar Algoritma – Dalam matematika dan ilmu komputer, algoritma adalah prosedur langkah-demi-langkah untuk penghitungan. Algoritma digunakan untuk penghitungan, pemrosesan data, dan penalaran otomatis. Belajar algoritma sangat penting bagi cara komputer mengolah data.

Belajar Algoritma

Belajar Algoritma

Belajar Algoritma

Banyak program komputer mengandung algoritma memberikan rincian pada instruksi khusus yang komputer harus lakukan (dengan urutan tertentu) untuk menjalankan pekerjaan tertentu, seperti menghitung gaji karyawan atau mencetak kartu rapor siswa. Maka, sebuah algoritma bisa dianggap sebagai urutan operasi yang bisa disimulasikan oleh sebuah sistem Turing-lengkap. Penulis yang mendukung tesis ini termasuk Minsky (1967), Savage (1987), dan Gurevich (2000).

Minsky: “Tapi kita juga menjaga, dengan Turing … bahwa setiap prosedur yang “secara alami” disebut efektif, bisa dinyatakan oleh mesin (sederhana). Walaupun tampaknya ekstrim, alasan tersebut … sukar disanggah”.

Gurevich: “… argumen informal Turing untuk menyokong tesis ini membenarkan tesis yang lebih kuat: setiap algoritma bisa disimulasikan oleh sebuah mesin Turing … menurut Savage [1987], sebuah algoritma adalah sebuah proses penghitungan yang ditentukan oleh sebuah mesin Turing”.

Biasanya, bila sebuah algoritma dihubungkan dengan pengolahan informasi, data dibaca dari sumber masukan, ditulis ke perangkat keluaran, dan/atau disimpan untuk pengolahan selanjutnya. Data simpanan dianggap sebagai bagian dari keadaan internal dari entitas yang melakukan algoritma. Pada prakteknya, keadaan tersebut disimpan pada satu atau lebih struktur data.

Untuk beberapa proses komputasi, algoritma harus ditentukan secara teliti: dijabarkan dengan cara ia bakal berlaku untuk semua kemungkinan yang dapat timbul. Yaitu, setiap langkah tambahan harus secara sistematis dihadapi, kasus-per-kasus; Kriteria bagi setiap kasus harus jelas (dan bisa dihitung).

Karena sebuah algoritma adalah kumpulan dari langkah-langkah yang tepat, urutan dari komputasi selalu penting bagi berfungsinya algoritma. Instruksi biasanya diasumsikan terdaftar secara eksplisit, dan dijelaskan dimulai “dari atas” dan terus “ke bawah”, sebuah gambaran yang dijelaskan secara formal oleh alur kontrol.

Sejauh ini, diskusi tentang formalisasi algoritma telah mengasumsikan premis dari pemrograman imperatif. Hal ini merupakan konsepsi umum, yang mencoba menjelaskan sebuah pekerjaan dalam makna diskrit dan “mekanis”. Keunikan dari konsepsi formalisasi algoritma adalah operasi penetapan, mengatur nilai dari sebuah variabel. Ia berasal dari intuisi “ingatan” sebagai kertas buram. Contoh operasi penetapan tersebut ada di bawah.

Algoritma Komputer – Belajar Algoritma

Dalam sistem komputer, sebuah algoritma pada dasarnya adalah instansi dari logika ditulis dalam perangkat lunak oleh pengembang perangkat lunak supaya efektif untuk komputer yang “ditargetkan” untuk mesin tertentu untuk menghasilkan keluaran dari masukan yang diberikan (kemungkinan nul).

Program yang “elegan” (padat), program yang “baik” (cepat): Pernyataan dari “sederhana dan elegan” muncul secara informal dalam buku Knuth dan dalam Chaitin:

Knuth: “… kita menginginkan algoritma yang baik dalam definisi estetika sederhana. Salah satu kriterianya … adalah waktu yang dibutuhkan untuk berjalannya algoritma … Kriteria yang lain adalah adaptasi dari algoritma ke komputer, kesederhanaan dan elegan, dll”.

Chaitin: “… sebuah program adalah ‘elegan, maksud saya adalah ia merupakan program terkecil untuk menghasilkan keluaran”. Chaitin membuka definisinya dengan: “Saya akan perlihatkan bahwa anda tidak dapat membuktikan sebuah program adalah ‘elegan'” — bukti tersebut akan menyelesaikan permasalahan perhentian (ibid).

Algoritma terhadap fungsi yang dapat dihitung oleh algoritma: Untuk sebuah fungsi bisa ada beberapa algoritma. Hal ini benar, bahkan tanpa mengembangkan kumpulan instruksi yang ada bagi programmer. Rogers mengamati bahwa “Sangat … penting untuk membedakan antara pengertian algoritma, misalnya prosedur dan pernyataan fungsi yang dihitung oleh algoritma, misalnya pemetaan hasil dari prosedur. Fungsi yang sama bisa memiliki beberapa algoritma berbeda”.

Sayangnya ada pertukaran antara kebaikan (kecepatan) dan elegan (kepadatan) — sebuah program yang elegan bisa melakukan lebih banyak langkah untuk menyelesaikan sebuah komputasi daripada yang kurang elegan. Sebuah contoh yang menggunakan algoritma Euclid bisa dilihat di bawah.

Komputer (dan komputor), model dari komputasi: Sebuah komputer (atau manusia “komputor”.) adalah tipe terbatas dari mesin, sebuah “perangkat mekanis deterministik diskrit” yang secara buta mengikuti instruksinya. Model primitif dari Melzak dan Lambek mereduksi pemikiran tersebut menjadi empat elemen: (i) diskrit, lokasi yang bisa dibedakan, (ii) diskrit, penghitung yang tak bisa dibedakan (iii) sebuah agen, dan (iv) sebuah daftar instruksi yang efektif relatif terhadap kemampuan dari agen.

Minsky menjelaskan variasi yang lebih sesuai dari model “abacus”-nya Lambek dalam “Basis Komputabilitas Paling Sederhana”. Mesin Minsky memproses secara berurutan lewat lima (atau enam tergantung bagaimana seseorang menghitungnya) instruksi kecuali baik sebuah kondisi IF-THEN GOTO atau GOTO tak bersyarat mengubah alur program keluar dari urutan. Selain HALT, mesin Minsky mengikutkan tiga operasi penetapan (penggantian, substitusi): ZERO (misalnya, isi dari lokasi diganti oleh 0: L ← 0), SUCCESSOR (misalnya, L ← L+1), dan DECREMENT (misalnya, L ← L-1). Jarang seorang programer harus menulis “kode” dengan kumpulan instruksi terbatas. Tapi Minsky memperlihatkan (sebagaimana Melzak dan Lambek) bahwa mesinnya adalah Turing komplit dengan hanya empat tipe instruksi utama: GOTO kondisional, GOTO tak bersyarat, penetapan/penggantian/substitusi, dan HALT.

Simulasi dari sebuah algoritma: bahasa komputer (komputor): Knuth menganjurkan pembaca bahwa “cara terbaik untuk belajar algoritma dalah mencobanya … langsung ambil pulpen dan kertas dan bekerja lewat contoh”. Lalu bagaimana dengan simulasi atau eksekusi yang sebenarnya? Programmer harus menerjemahkan algoritma ke dalam bahasa yang mana simulator/komputer/komputor dapat mengeksekusi secara efektif. Stone memberikan contoh dari hal ini: saat menghitung akar dari persamaan kuadrat si komputor harus tahu bagaimana mendapatkan akar kuadrat. Jika tidak maka supaya algoritma dapat efektif ia harus menyediakan sejumlah aturan untuk mengekstrak akar kuadrat.

Hal ini berarti programer harus tahu sebuah “bahasa” yang efektif relatif terhadap target pada agen komputasi (komputer/komputor).

Lalu model apa yang seharusnya digunakan untuk simulasi? Van Emde Boas mengamati “bahkan bila kita mendasari teori kompleksitas dengan mesin abstrak bukannya mesin kongkrit, kesembarangan dari pemilihan model masih tetap ada. Pada titik itulah mulainya pemikiran simulasi”. Bila kecepatan yang dihitung, jumlah instruksi berpengaruh. Sebagai contohnya, subprogram dalam algoritma Euclid untuk menghitung sisa akan berjalan lebih cepat jika programmer memiliki instruksi “modulus” (sisa pembagian) bukannya dengan pengurangan (atau lebih parah: hanya “penurunan”).

Pemrograman terstuktur, struktur kanonikal: Menurut Tesis Church-Turing setiap algoritma bisa dihitung dengan sebuah model yang dikenal Turing komplit, dan menurut demonstrasi Minsky kekomplitan Turing membutuhkan hanya empat tipe instruksi — GOTO bersyarat, GOTO tak bersyarat, penetapan, HALT.

Kemeny dan Kurtz mengamati bahwa saat penggunaan GOTO tak bersyarat yang “tak disiplin” dan IF-THEN GOTO bersyarat bisa menghasilkan “kode spageti” seorang programer bisa menulis program terstruktur menggunakan instruksi tersebut; di lain sisi “juga memungkinkan, dan tidak begitu sulit, untuk menulis sebuah program terstruktur yang buruk dalam sebuah bahasa terstruktur”. Tausworthe menambahkan tiga struktur kanon Bohm-Jacopini: SEQUENCE, IF-THEN-ELSE, dan WHILE-DO, dengan dua lagi: DO-WHILE dan CASE. Keuntungan dari program terstruktur adalah ia cocok dengan pembuktian kebenaran menggunakan induksi matematika.

Simbol diagram alur Pembantu grafik yang disebut diagram alur memberikan suatu cara untuk menjelaskan dan mendokumentasikan sebuah algoritma (dan program komputer). Seperti alur program dari mesin Minsky, sebuah diagram alur selalu mulai dari atas dan terus ke bawah. Simbol utamanya hanya 4: arah panah memperlihatkan alur program, segi empat (SEQUENCE, GOTO), wajik (IF-THEN-ELSE), dan titik (OR). Struktur kanonikal Bohm-Jacopini dibuat dari bentuk-bentuk primitif tersebut. Sub-struktur bisa “bersarang” dalam segi empat hanya jika jalan keluar tunggal terjadi pada super-struktur. Simbol dan penggunaannya untuk membangun struktur kanonikal diperlihatkan dalam diagram.

Itulah Pengetahuan Dasar dalam Belajar Algoritma sebelum belajar lebih dalam mengenai Algoritma. Semoga bermanfaat.

Baca juga Cara Belajar dengan Baik, dan Kesulitan Belajar.

Kata Kunci:

belajar algoritma diskrit
Pengetahuan Dasar dalam Belajar Algoritma | Wawang Armansyah | 4.5